1、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
PS:经常会用到的语言包括Python、Java、C或者C++,有些人用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
2、Hadoop开发工程师
熟练掌握Hadoop整个生态系统的组件如:Yarn,HBase、Hive、Pig等重要组件,能够实现对平台监控、辅助运维系统的开发。hadoop工程师主要是偏开发层面,指的是围绕大数据系平台系统级的研发人员, 熟练Hadoop大数据平台的核心框架,能够使用Hadoop提供的通用算法,
3、数据分析师
数据分析师 是数据师Datician['detɪʃən]的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
PS:作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、等数据分析软件中的一门,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
4、大数据分析师
通俗一点,这是集Hadoop开发工程师和数据分析师、数据挖掘工程师为一体大才能人才。如果这些你都会,并且有一定的经验,那薪资可是不用说的。
5、大数据可视化工程师
需要熟悉Storm、Spark等计算框架,熟悉Scala/Python语言;精通Java开发,能够独立搭建SSM项目;了解Redis或MongoDB等Nosql,熟练掌握linux基本操作;拥有一定Java多线程开发能力,对程序设计模式有一定理解,对数据库有一定了解,熟悉ETL流程等。
在现当代培训行业蒸蒸日上的状态,想要挣钱就要跟上前进的步伐,踏上新步伐
以上内容来自网络,目的只是为了学习参考和传递资讯。
其版权归原创作者所有,如不慎侵犯了你的权益,请联系我们【qq123456】告知,我们将做删除处理!