联创资讯

探秘阿尔法狗所使用的人工智能技术

51

阿尔法围棋(AlphaGo)是于2014年开始由Google DeepMind开发的人工智能围棋软件。它曾入选2016年度中国媒体十大新词,并被围棋界公认其棋力已超过人类职业围棋顶尖水平。 专业术语上来说,AlphaGo的做法是使用了蒙特卡洛树搜索与两个深度神经网络相结合的方法,其中一个是以估值网络来评估大量的选点,而以走棋网络来选择落子。在这种设计下,计算机可以结合树状图的长远推断,又可像人类的大脑一样自发学习进行直觉训练,以提高下棋实力

阿尔法围棋(AlphaGo)是一款围棋人工智能程序,程序利用“价值网络”去计算局面,用“策略网络”去选择下子

阿尔法围棋(AlphaGo)的主要工作原理是“深度学习”,“深度学习”指多层的人工神经网络和训练它的方法。一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就像生物神经大脑的工作机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理,就像人们识别物体标注图片一样。 

两个大脑

阿尔法围棋(AlphaGo)通过两个不同神经网络“大脑”合作来改进下棋,这些大脑是多层神经网络跟那些Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器网络处理图片一样。经过过滤,13个完全连接的神经网络层产生对它们看到的局面判断。这些层能够做分类和逻辑推理。

标签: 阿尔法 人工智能