联创资讯

"掌握这些知识,让你轻松学习人工智能AI!"

37

作为IT开发人员,根据自己的经验简单的做了一下总结,分了两大部分内容:

一、自然语言处理(NLP)

(1)、基础

1、文本清洗(正则、分词与规范化);

2、中文分词(HMM、trie tree、工具有jieba)

3、文法分析

4、词袋模型(ngram)

5、关键词抽取(tfidf、texttrank)

6、语义相似度(term、score、距离函数)

7、文本的向量化表示(word2vec(skip、gram、glove)、elmo、bert)

8、机器学习(lr、svm、bayesian、fast text、)

9、深度学习(textCNN、textRNN、seq2seq、siamese LSTM、DSSM、attention)

(2)、在实际项目中的应用

1、实体识别(应用:***智能、对话机器人)、(技术:CRF、bilstm-CRF、PCNN)、(扩展:知识图谱、图数据库)

2、query相似变换(应用:sug、纠错改写)、(技术:elasticsearch 建库索引)

3、文本分类(应用:情感识别、文章类型、意图识别(样本爬取)、语种检测)

4、序列标注(机器翻译、词性标注)

5、文本生成(应用:诗歌对联、摘要生成)、(技术:VAE、GAN)

6、聊天机器人(案例:***anyQ)

二、图像视觉处理(计算机视觉)

(1)、主要应用

1、主要应用:无人驾驶、***影像诊断、安防、人脸识别、视频内容理解、图像分类、图像分割、目标检测、目标跟踪。

2、OpenCV

3、图像分类(CNN、AlexNet、LeNet、VGG、ResNet、Fast-RCNN)

4、图像检索(距离度量与检索、图像特征抽取、LSH近邻检索算法)

上面两大内容中要学习的内容分为三个阶段

第一阶段:人工智能基础。包括编程基础:机器学习深度学习框架例如tensorflow/pytorch;数学基础:高等数学,线性代数,概率论,统计学知识;机器学习基础:决策树,逻辑回归,聚类算法,支持向量机,集成学习;深度学习基础:反向传播,链式求导,卷积神技网络,循环神经网络等。

第二阶段:算法在NLP领域的实践应用。基础的NLP任务:词法分析,包括:分词,词性标注等;句法依存分析;语义表示与语言模型;命名实体识别;文本分类;文本生成;机器翻译;信息检索等。

第三阶段:算法在CV领域的实践应用。CV图像处理的基础,opencv的框架;同时也是基于cv领域应用最广的几种任务:图像分类;语义分割;图像目标检测;目标跟踪;序列分析。

人工智能入门需要掌握的知识有:自然语言处理、机器学习、计算机视觉、知识表示、自动推理和机器人学。虽然这些领域的侧重点各有不同,但是都需要一个重要的基础,那就是数学和计算机基础。

需要必备的知识有:

1、线性代数:如何将研究对象形式化?

2、概率论:如何描述统计规律?

3、数理统计:如何以小见大?

4、最优化理论:如何找到最优解?

5、信息论:如何定量度量不确定性?

6、形式逻辑:如何实现抽象推理?

7、线性代数:如何将研究对象形式化?人工智能简介:1、人工智能(ArtificialIntelligence),英文缩写为AI。2、它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能涉及的学科:哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。

标签: 人工智能 专业