AI工程师需要学习:
监督学习中需要彻底掌握三个最基础的模型,包括线性回归、对数几率回归和决策树。
了解这些模型的数学含义,能够理解这些模型的假设和解法。写实际的代码或者伪代码来描述这些模型的算法,真正达到对这些算法的掌握。“K 均值算法”有必要认真学习,做到真正的、彻底的理解。
理解假设检验容易被 AI 工程师遗忘的内容。要熟悉假设检验的基本设定和背后的假设,清楚这些假设在什么情况下可以使用,如果假设被违背了的话,又需要做哪些工作去弥补。
具备最基本的编程能力,对数据结构和基础算法有一定的掌握。对于搭建一个人工智能系统(比如搜索系统、人脸识别系统、图像检索系统、推荐系统等)有最基本的认识。
以上内容来自网络,目的只是为了学习参考和传递资讯。
其版权归原创作者所有,如不慎侵犯了你的权益,请联系我们【qq123456】告知,我们将做删除处理!